A

adaptation physical characteristic or behaviour of a species that increases the species' chances of survival in a particular environment
alveoli tiny air-filled sacs in the lungs; the site of gas exchange (singular alveolus)
amplitude height of the wave from its middle rest position to its highest point
angle of incidence angle between the incident ray and the normal
angle of reflection angle between the reflected ray and the normal
aorta large artery carrying blood from the left ventricle to the body
aperture hole or opening in a camera that lets in light
aqueous solution solution in which water is the solvent
arteries thick-walled blood vessels that take blood away from the heart to the rest of the body
atherosclerosis cholesterol build-up on the walls of arteries
atria upper chambers of the heart that receive blood from the body and lungs (singular atrium)
autonomic nervous system division of the peripheral nervous system that controls automatic responses in the body, such as heart rate
axon long extension of a neuron's cell body that transmits information to neighbouring cells
binoculars device for viewing distant objects; made up of two short refracting telescopes fitted together
bioluminescence the ability of certain organisms to produce light by a chemical reaction
bronchi two main branches of the trachea that lead into the lungs (singular bronchus)
bronchioles tubes that connect the bronchi to the air sacs in the lungs
bronchitis disease in which mucus builds up in the bronchi and causes them to become narrower
buoyancy tendency of an object to float when placed in a fluid
buoyant force upward force that a fluid exerts on an object; opposite to the pull of gravity on an object in a fluid

C

camera eyes eyes that are round and have a cornea, a lens, and a retina
capillaries tiny blood vessels that connect arteries to veins; one cell layer thick and extremely narrow
carbon monoxide colourless, odourless gas that is released when a cigarette burns
cell the basic unit of life
cell membrane thin structure that encloses all the contents of plant and animal cells; has tiny openings that allow particles of some substances, but not others, to pass through
cell wall outer covering of a cell that provides strength and support; found only in plant cells
central nervous system division of the nervous system composed of the brain and spinal chord
charge-coupled device device that converts light into electrical energy; used in digital cameras
chemical digestion breakdown of large food particles into smaller particles by enzymes
chloroplasts organelles that convert sunlight into food; found only in some plant cells
cilia hair-like extensions that protrude from the surface of some unicellular organisms and from some cells in multicellular organisms
circulatory system transport system reaching every cell in the body; delivers nutrients absorbed by the digestive system and oxygen absorbed by the respiratory system to every cell; transports waste products from cells for removal by the excretory system; defends the body against disease; connects all organ systems
climate average weather measured over a long period of time
colloid cloudy mixture in which the droplets or tiny particles are too small to separate out
complex machines system in which simple machines all work together; parts of a complex machine that have just one function are called subsystems and often contain a simple machine
compound eyes eyes that are made up of many smaller units; found in insects and crustaceans
compound light microscope microscope that has two or more lenses and has a light source
compressibility extent to which a substance (solid, liquid, or gas) can be compressed; objects under compression tend to deform in shape
concave lens piece of transparent material that is thinner in the middle than at the edges; light rays passing through it diverge or spread out
concave mirror reflecting surface that is curved inward like the inside of a bowl or a spoon; light rays reflected from it converge (come together)
concentration the amount of solute (usually in grams or kilograms) dissolved in a specific amount of solvent (usually in millilitres or litres) in a solution; written g / mL or kg / L
cones specialized cells in the retina that detect colour; there are three types of cones, each sensitive to different colours: red, green, and blue.
connective tissue supports and connects different parts of the body
Continental Divide highest point of land on a continent; rivers flow into different oceans depending on which side of the divide they start
convex lens piece of transparent material that is thicker in the middle than at the edges; light rays passing through it converge or come together
convex mirror reflecting surface that bulges out like the back of a spoon; light rays reflected from it diverge (spread out)
crest highest point of a wave
current stream of water that moves within a larger body of water
cytoplasm contents of the cell inside the cell membrane excluding the nucleus; contains nutrients the cell needs to survive

D

dendrites small branches of a neuron that receive information from neighbouring cells
density mass per unit of volume; calculated by dividing the mass of a substance by its volume
dialysis removal of waste products from the blood using a machine that functions as a kidney
diaphragm large muscle below the lungs that helps move air in and out of the lungs; part that changes the size of a camera's aperture; it varies the amount of light that reaches the film
diffuse reflection reflection that happens when parallel rays hit a rough surface; all rays reflect at different angles
diffusion the movement of particles of a substance from an area of higher concentration to an area of lower concentration
digestive system breaks down the food you eat into parts small enough to be absorbed and transported throughout the body
digital imaging process of creating an image using a computer
distillation technique for separating solutions that involves boiling and condensation
diversity description of the variety of different species in an ecosystem; may also be used to describe variety in a population or species

E

efficiency measurement of how well a machine or device uses energy; can be calculated by dividing mechanical advantage by speed ratio or by dividing work output by work input
electromagnetic radiation all forms of radiant energy: visible light, infrared radiation, ultraviolet radiation, radio waves, X-rays etc.
electromagnetic spectrum refers to the whole range of wavelengths of visible and invisible electromagnetic radiation
emphysema disease that causes damage to lung tissue, causing shortness of breath
enzyme substance created by the body to carry out chemical digestion
epithelial tissue covers the surface of the body and internal organs and lines the inside of some organs
excretion waste removal
excretory system removes chemical and gaseous wastes from the body; involves organs from other bodily systems
eyepiece lens or set of lenses in a microscope or telescope that is closest to the user's eye

F

field of view the area that you can see when looking through a microscope
film material that is sensitive to light; used in cameras to record images
fluid any matter that has no fixed shape, can flow, and takes the shape of its container; any substance in a gas or liquid state
fluorescent form of artificial light; uses ultraviolet light waves to make the coating inside an opaque tube glow white
focal point point at which light rays meet, or appear to meet, after being reflected by a mirror, or refracted by a lens
friction force that opposes motion
function purpose or task
gamma rays high-energy electromagnetic radiation with the shortest wavelength; used to treat some types of cancer
gastric juice liquid in stomach made of mucus, hydrochloric acid, enzymes, and water; chemically digests food
gears pair of wheels with teeth that interlink; when they rotate together, one gearwheel transfers turning motion and force to the other
glacier large moving body of ice; glaciers can be many metres or even kilometres thick

H

hard water water containing a high concentration of calcium and magnesium
hazard symbol warning symbol on hazardous materials; made up of a safety warning enclosed in a yellow triangle (which means "caution"), orange diamond (which means "warning"), or red octagon (which means "danger")
heterogeneous mixture mixture in which the different substances can be seen
homogeneous mixture mixture in which the different substances cannot be seen; a mixture that looks as if it is all one substance
hydraulic system system that uses a liquid under pressure to move loads; device that uses liquids in a confined space to transfer forces; works according to Pascal's law
hydrometer device used to measure the density of liquid

I

incandescent form of artificial light; uses electrical energy to heat a thin wire thread that glows white hot
incident ray ray of light that arrives at a mirror or other substance
inclined plane simple machine made up of a flat surface, such as a board, at an angle to another flat surface, such as the ground or a table top; ramp
incompressible not capable of being compressed; liquids are said to be incompressible
infrared rays electromagnetic waves that have less energy than visible light; they are invisible but can be felt as heat
input force force applied to operate a machine
integumentary system protects body's internal environment from the external environment
intensity brightness of light; amount of light arriving per unit area at a place
interact work together
interneurons neurons in the central nervous system that connect sensory neurons to motor neurons
invisible spectrum parts of the electromagnetic spectrum that the human eye cannot see
iris band of muscle in the eye that controls the size of the pupil and the amount of light entering the eye

L

laser acronym for light amplification by the stimulated emission of radiation; beam of light whose waves all have the same frequency and move in step and in the same direction; able to travel long distances without spreading out
law of reflection angle of incidence of a wave hitting a surface equals the angle of reflection
lens curved piece of glass or other transparent material that refracts light in a predictable way
lever simple machine made up of a rigid bar or plank that rotates on a fixed object called a pivot or fulcrum
linkage belt or chain to transfer energy from an energy source to an object (e.g., a bicycle chain)
luminous describes objects that produce light; for example, the sun, light bulb, fire, etc.
lung cancer growth of tumours, which take up space in the lungs, making breathing difficult

M

machine device that helps us do work
marrow type of connective tissue found in the bones that produces red blood cells
mechanical advantage amount by which a machine can multiply a force; calculated by dividing the output force by the input force
mechanical digestion physical breakdown of food into small particles
mechanical mixture heterogeneous mixture; mixture in which the different substances are easy to see
metabolism all the life processes that take place in the cell; includes energy-using and energycreating processes
micro-organisms usually unicellular organisms that can be seen only through a microscope
microscope optical device used for viewing very small objects; has at least two lenses: the objective lens and the eyepiece lens
microvilli finger-like projections on the cells that line the villi (singular microvillus)
microwaves electromagnetic radiation that has a shorter wavelength than radio waves and carries more energy; used to cook food and transmit audio and video signals
mitochondria organelles that convert energy the cell receives into a form it can use (singular mitochondrion)
mixture combination of two or more different pure substances
monitor observe, check, or keep track of something for a specific purpose
motor neurons carry information from the central nervous system to the muscles or other organs
multicellular made of more than one cell muscle tissue allows movement
muscular system moves bones; moves organs that contain muscle tissue
mycoplasma type of microscopic organisms

N

nephrons filtering units of the kidney that remove wastes from the blood and produce urine
nervous system coordinates and controls all organs and organ systems; detects, processes, and responds to stimuli
nervous tissue tissue of the brain, spinal chord, and nerves
neurons specialized cells of the nervous system that receive and transmit information
nicotine addictive drug found in cigarettes that speeds up the heart and raises blood pressure
nocturnal describes animals that are active at night
non-luminous describes objects that do not produce light but may reflect it (for example, the moon); most objects on earth are non-luminous
normal line perpendicular to a surface (that is, forms a 90° angle with the surface)
nucleus organelle that directs all the activities in a cell
objective lens lens in an optical device, such as a microscope or telescope, that gathers light from an object to form an image
ommatidium unit of a compound eye; has a lens, focussing cone, and light-sensitive cell (plural ommatidia)
opaque describes materials that do not allow light to pass through; for example, wood, metal, cardboard, etc.
optic nerve nerve that leads from the retina to the brain
optical device any device that uses light; for example, mirrors, lenses, microscopes, and telescopes
organ group of tissues that work together to perform a specific function
organ system group of organs that work together to perform a certain task, such as digestion or breathing
organelles structures in cells that perform a certain function
organisms living things
osmosis diffusion of water through a selectively permeable membrane
output force force a machine applies to an object
particle model of matter model that explains the behaviour of solids, liquids, and gases; it states that all matter is made up of tiny moving particles that attract each other and have spaces between them

Pascal's law when pressure is applied to a liquid in a container, the pressure and force is transmitted equally and undiminished throughout the liquid; an enclosed liquid transmits pressure equally in all directions
pasteurization process of heating food to a high temperature in order to kill harmful microorganisms
peripheral nervous system division of the nervous system composed of the cranial and spinal nerves
peristalsis wave-like muscle contractions along the digestive system
phosphor substance that emits light when exposed to ultraviolet radiation
phosphorescence process in which a substance emits light after it has absorbed ultraviolet light
photophore light-producing organ found in bioluminescent organisms
photoreceptors light-sensitive cells found in the retina of the eye; there are two types: rods and cones
photosynthetic tissues group of cells containing chloroplasts; produces food for the plant
pixel short for picture element; individual element of a digital image
plane mirror flat mirror; reflecting surface that has no curvature
platelets cell fragments in the blood that help stop bleeding at cuts
pneumatic system system that uses a gas under pressure to move loads; device that uses gases in a confined space to transfer forces; works according to Pascal's law
population group of organisms of the same species that live in a particular area
potable water water that is safe for humans to drink
pressure measure of the amount of force applied to a given area; as an equation $\mathrm{p}=\mathrm{F} / \mathrm{A}$, where p is pressure, F is force, and A is area; measured in pascals (Pa)
primary colours red, green, and blue light; adding these three colours of light produces white light
protective tissues protect a plant and absorb water from soil
pseudopods foot-like projections on an amoeba; used for movement and capturing food
pulley simple machine made up of a wire, rope, or cable moving on a grooved wheel; may be made up of one or many wheels; can be fixed in place or movable
pump device that moves a fluid through or into something; piston pumps, diaphragm pumps, and Archimedes screws are three common kinds of pumps; the heart is a natural pump
pupil opening in the eye that lets in light pure substance substance made up of only one type of matter; matter that has one type of particle throughout
radar acronym for radio detection and ranging; system that detects reflected microwaves
radio waves electromagnetic radiation used in communications around the world
ray diagram diagram used to represent how light travels; each ray has an arrow to show the direction of travel
react respond
real image image formed when rays meet at a point; the image can be projected onto a screen
red blood cells small, pliable cells that have no nucleus and are specialized for carrying oxygen to all the cells of the body
reflecting telescope telescope that uses a curved mirror and a lens to form an enlarged image
reflex automatic response to a stimulus; happens very quickly and without conscious control
refracting telescope telescope that uses two lenses to form an enlarged image
refraction bending of light as it travels from one material to another material
regular reflection reflection that happens when parallel rays hit a smooth surface; all rays reflect at the same angle
resolution the number of pixels per unit area in a digital image
respiratory system supplies blood with oxygen from the outside air and removes carbon dioxide from your blood
response organism's reaction to a stimulus
retina special lining on the back of the eye; when light hits the retina, receptor cells send messages to the brain, which translates them into an image
reverse osmosis movement of water through a membrane from an area of lower water concentration to one of higher water concentration; technique used for purifying water
rods specialized cells in the retina that are sensitive to low levels of light

5

salinity amount of dissolved salts in water
saturated solution solution in which no more solute can be dissolved at a given temperature
saturation point point at which no more solute can be dissolved in a given volume of solvent at a given temperature
screw simple machine that consists of a cylinder with a groove cut in a spiral on the outside
secondary colours yellow, cyan, and magenta; colours made from adding any two primary colours of light
sediments eroded rock fragments and soil carried by water or wind
selectively permeable describes a membrane with very small openings that allow particles of some substances, but not others, to pass through
sensory neurons cells that carry information from the body to the central nervous system
shutter part that acts like a door to control the amount of light entering a camera
simple machine tool or device made up of one basic machine
skeletal system provides a mobile support frame for the body; protects soft-tissue organs
smallpox disease that produces a rash and high fever and can cause blindness and death; the first disease to be controlled by a vaccine
solubility ability to dissolve; the mass of solute that can dissolve in a given amount of solvent to form a saturated solution at a given temperature
solute substance that dissolves in a solvent to form a solution
solution homogeneous mixture; mixture of two or more pure substances that looks like one substance
solvent substance that dissolves a solute to form a solution; water and alcohol are common solvents
somatic nervous system division of the peripheral nervous system that controls voluntary responses
specialized cells cells that have specific structures that help them to perform particular functions
speed ratio measure of how the speed of the object is affected by a machine; calculated by dividing the input distance by the output distance
spontaneous generation false idea that living things could come from non-living matter
stimulus any change in an organism's environment (plural stimuli)
storage tissues stores food in plants
stream characteristics characteristics used to describe a stream or river; these include volume and rate of flow, slope and shape of bed
structures parts of an organism that perform specific tasks
subsystem (of a machine) smaller group of parts within a complex machine that performs a specific function
suspension cloudy mixture in which droplets or tiny pieces of one substance are held within another substance; if you leave a suspension undisturbed, its parts will usually separate out
system (in context of machine) a group of parts that work together to perform a general function, forming a complex machine

T

tar dark sticky substance formed when tobacco burns
telescope optical device for viewing distant objects; there are two types: reflecting and refracting telescopes
theory of colour addition theory that explains what happens when coloured lights are mixed together
tide daily change in water level of the oceans
tissue group of similar cells working together to perform a specific function
translucent describes materials that allow some light to pass through
transmission special type of linkage for transferring the energy from the engine to the wheels in large vehicles such as cars and trucks
transparent describes materials that allow light to pass through with little or no reflection; for example, glass
transport tissues transport food and water to different parts of the plant; includes xylem and phloem

U

ulcers painful sores on the stomach lining often caused by the micro-organism H. pylori
ultraviolet light electromagnetic waves that have more energy than visible light; too much ultraviolet radiation can increase the risk of skin cancer
unicellular made of just one cell
unsaturated solution solution in which more solute can be dissolved at a given temperature
urea poisonous substance converted from highly toxic ammonia by the liver
vaccine substance that is taken by or injected into an animal or person to produce an immunity to a disease; usually prepared from a mild form of the disease
vacuoles organelles that store water and other substances required by the cell
valve device that controls the flow of fluids
veins blood vessels that return blood from the body to the heart; have valves
ventricles lower chambers of the heart that pump blood to the body
villi small finger-like projections on the inner surface of the small intestine that absorb nutrients (singular villus)
viscosity liquid's internal resistance or friction that keeps it from flowing
visible light spectrum colours of visible light; the colours in a rainbow or viewed when light is split by a prism

W

water quality measure of the amount of substances besides water in a water sample; description of how pure a water sample is
watershed area of land that drains into one main lake or river
wave in water, circular movement of water particles that causes a change in pattern that moves along the water's surface; the pattern can move over long distances but the water particles do not
wave model of light model used to explain the characteristics and behaviour of light energy; it describes light as energy in the form of waves; the different colours of light have different wavelengths; waves with shorter wavelengths have higher energy than those with longer wavelengths
wavelength distance between the top or crest of one wave and the crest of the next
wedge simple machine that looks like an inclined plane, but is forced into an object
wheel and axle simple machine made up of two wheels of different diameters that turn together; a longer motion on the wheel produces a shorter but more powerful motion at the axle
white blood cells blood cells specialized to fight infection

WHMIS Workplace Hazardous Materials Information System; a system of easy-to-see special warning symbols on hazardous materials
work done when a force acts on an object to make the object move; calculated by multiplying force times distance

X

X-rays high energy electromagnetic radiation; can be used to make images of the interior of the body

A

airships, 51
algal bloom, 388
alveoli, 134
amoeba, 114
amplitude, 213
angle of incidence, 196, 203
reflection, 196
refraction, 203
animal cell, 109
aorta, 136
aperture, 231
aqueducts, 259
aqueous solution, 29
Aral Sea, 393
Archimedes screw, 260, 261, 264
arteries, 137
atherosclerosis, 163
atria, 136
axon, 147

B

ballast tanks, 71
bathyscaph, 69
bends, 65
bile, 130
binoculars, 186
biodegradable plastic, 319
bioluminescence, 225
bladder, 141, 143
blood, 139
blood vessel, 130
bronchi, 134
bronchioles, 134
bronchitis, 162
buoyancy, 50, 51
buoyant force, 50
capsule endoscope, 174, 175
camera, 232
camera eyes, 236
capillaries, 98, 137, 139
carbon monoxide, 161
career profiles:
computer graphic artist, 228
glaciologist, 354
inventor, 320
mechanical engineer, 302
medical lab technologist, 152
professional photographer, 210
soft-drink manufacturer, 46
cell, 86, 103, 121
membrane, 103, 108
selectively permeable, 116
red blood, 121
specialized, 121
wall, 103, 108
white blood, 140
charge-coupled device (CCD), 243
chemical weathering, 359
chinook, 367
chloroplasts, 108
cholesterol, 163
chromatogram, 23
cilia, 114
climate, 366, 367, 369
colloid, 21
compound eyes, 238
compound light microscope, 100, 101
cones, 232
Continental Divide, 360, 362
continental shelves, 362
cornea, 234
currents, 369
ocean, 370
cytoplasm, 103, 108, 116

D

dams, 396
decompression, 65
delta, 358
dendrites, 147
density, 42, 43, 47-49
detergent, 63
ingredients, 63
dialysis, 145
diaphragm, 133, 232
diatoms, 111
diffusion, 115, 139
digestion, chemical, 127
mechanical, 127
digital imaging, 241
storage, 239
dissolving process, 34
rate of, 35
distance input, 281
output, 281
distillation, 344, 345
diversity, 374
lake, 375
middle zone, 375
lowest zone, 375
upper zone, 375
ocean, 376
continental shelf, 376
estuary, 376
intertidal zone, 376
oceanic zone, 377
drumlins, 364, 365

E

E. coli, 340
ecosystem, 374
efficiency, 285
electromagnetic radiation, 217
spectrum, 217
emphysema, 162
energy, 86, 289, 290
enzymes, 127
epiglottis, 129
erosion, 359
eskers, 364, 365
esophagus, 128
excretion, 141
exhalation, 133
eye, 231

F

field of view, 105
film, 232
finches, 91
flood plain, 358
fluids, 13, 14, 15, 38, 41, 295
compressibility, 53
pressure, 298
properties of, 15
focal length, 233
point, 197, 198
folded mountains, 362
force, 294
input, 280
output, 280
ratio, 280
frequency, 213
friction, 284, 285, 292
fulcrum, 262
function, 89, 90

Galileo's thermometer, 48
gall bladder, 130
gamma rays, 217, 220
gas exchange process, 133
gasoline, 290
gastric juice, 129
gears, 273, 275
glaciers, 363, 365
continental, 363, 364
valley, 363, 364
glands, 96
gravity, 260

H

H. pylori, 164
habitat destruction, 398
hard water, see water
hazard symbols, 10
health, 159
heart, 136
hot springs, 355
Hubble Space Telescope, 174, 175
hydraulic jack, 294, 298
hydraulic system, $8,16,58,59$, 60, 293, 295, 298, 299
hydrometer, 16
hyperbaric chamber, 65

I

icecaps, 363
ideal mechanical advantage, 285
image, 198, 208
formation, 233
incident rays, 194
infrared waves, 216
inhalation, 133
input distance, 281
interneuron, 148

J

joule, 289

K

kidneys, 141, 142, 143, 145

L

large intestine, 130
laser eye surgery, 234
law of reflection, 196
lens, 204, 234
concave, 204
convex, 205, 208
lever, see machines, simple light
fluorescent, 222
incandescent, 222
intensity, 190
phosphorescent, 223
primary colours, 226
properties of, 181
secondary colour, 227
speed of, 181
lipids, 130
liquid, 41
incompressibility, 56
lithosphere, 361, 362
liver, 130, 142
luminous object, 191
lung, 133, 134, 136
cancer, 162

M

machines, 258, 259
complex, 270, 286
simple, 261, 300
effects of, 268
inclined plane, 261, 263
lever, 261, 262, 279, 300
first class, 262
second class, 262
third class, 262
pulley, 261, 264
screw, 261, 264
wedge, 261, 263
wheel and axle, 261, 265
MAGLEV, 316
magnetic resonance imaging
(MRI), 218
marrow, 121
materials, opaque, 191
translucent, 191
transparent, 191
meanders, 358
mechanical advantage, 280-282, 284, 285, 292, 298-300, 306
mechanical devices, 272, 306
design, 306
effectiveness, 306
efficiency, 306
evaluation, 306, 308
evaluation criteria, 312
linkage, 272
transmission, 272, 273
metabolism, 86
microbiology, 182
micro-organisms, 110
microscope, 98, 99, 102, 182
microvilli, 130
microwaves, 216, 218
mid-ocean ridges, 362
mirrors, concave, 197, 198
convex, 199
mitochondria, 108, 116
mixtures, 19
heterogeneous, 20
homogeneous, 20
mechanical, 20
moraines, 364, 365
motor neurons, 148
mouth, 128
mycoplasma, 110

N

nephrons, 142, 143
nervous system, autonomic, 148
central, 147, 148
peripheral, 147, 148
somatic, 148
neurons, 147
newton, 280, 294
Newton, Sir Isaac, 180
nicotine, 162
night vision goggles, 235
nocturnal animals, 237
non-luminous object, 191
normal, 196
nucleus, 103, 108
-
object, luminous, 191
non-luminous, 191
oil sands, 74
ommatidium, 238
optic nerve, 232
optical devices, 182
organ, 93, 103
organ system, 93, 103
circulatory, 93, 126, 135
digestive, 94, 126, 127
excretory, 95, 126, 141
integumentary, 96
muscular, 95, 126
nervous, 94, 126, 146
reacting and interacting, 126
respiratory, 94, 126, 132
skeletal, 95
organelles, 108, 111, 116
organisms, 85
adaptations, 88, 378
adaptations to light, 378
pressure, 379
salinity, 379
temperature, 378
water movement, 380
development, 87
growth, 87
multicellular, 110, 111, 121
structures, 89-91
function, 89
unicellular, 110, 111
osmosis, 116, 119, 345
output distance, 281

pancreas, 130
paper chromatography, 21
paramecium, 114
particle accelerators, 316, 317
particle model of matter, 33, 41
pascal, 57, 294
Pascal's law, 58, 294, 299
pasteurization, 156
peristalsis, 129
pH, 344
phosphates, 63
phosphor, 222
phosphorescence, 223
photophore, 225
photoreceptors, 232
pipeline pigs, 67
piston, 67, 295, 298, 300
pivot, 262
pixels, 241, 242
plane mirrors, 194
plant cell, 109
plasma, 140
plate tectonics, 362
platelets, 140
plates, 362
Plimsoll line, 51
pneumatic system, 16, 58, 59, 60, 294
pollution, 403
pop can opener, 308, 309
buttons, 311
church key, 310
non-removable tab top, 311
removable tab top, 310
population, 381
changes in, 383
long-term changes, 384
seasonal changes, 383
short-term changes, 384
precipitation, 370
pressure, 57, 58, 294, 295, 299
pseudopods, 114
pumps, 66, 260
pupil, 231
pure substances, 19

R
radar, 218
radio waves, 216, 218
ramp method, 40
ray diagrams, 190
real image, 205
rectum, 130
recycling technologies, 319
reflection, diffuse, 193
regular, 193
reflex, 149
refraction, 201, 203, 215
reproduction, 87
resolution, 242
response, 86
retina, 232
reverse osmosis, 344, 345
river, profile, 358
robots, 317, 318
rods, 232
runoff, 398

5
sakia, 260
salinity, 339
salivary amylase, 128
salts, 339
saturation point, 25
scurvy, 158
seamounts, 362
sediment, 359
load, 359
sensory neurons, 148, 149
shutter, 232
skin, 143
slurry, 14
small intestine, 130
smallpox, 155
sodium chloride, 339
solubility, 25, 28, 29, 31, 34
solute, 24,34
solution, 20
concentration of, 24, 25
saturated, 25
unsaturated, 25
solvent, 24,34
speed, 281
speed ratio, 281, 282, 284, 292, 306
spontaneous generation, 87
stimulus, 86
stomach, 129
stream characteristics, 355
structure, functions of, 89
submarine, 71
subsystem, 270
surfactant, 63
suspension, 21
system, 270

T

tar, 161
telescope, 183
reflecting, 184
refracting, 184
television, 227
theory of colour addition, 227
theory of plate tectonics, 361
thermal pollution, 31
tides, 353
tissues, 103
connective, 122, 137
epithelial, 122, 134, 137, 139
muscle, 122, 137
nervous, 122, 147
photosynthetic, 123
protective, 123, 124
storage, 124
transport, 123, 124
touch receptors, 151
trachea, 133
trenches, 362
tsunami, 213, 352
turbidity, 344

u

ulcers, 164
ultraviolet rays, 217, 219
urea, 142
ureters, 141, 143
urine, 143, 145

vaccine, 155
vacuoles, 103, 108
valves, 68
veins, 137
ventricles, 136
villi, 130
viscosity, 39, 40, 41
visible light spectrum, 214
volcanic islands, 362
w
water bears, 123
water cycle, 392
water, hard, 340
major uses, 394
agriculture, 394
domestic, 395
industry, 395
potable, 335, 341
quality, $339,386,388$
factors affecting, 398
factories, 398
habitat destruction, 398
oil spills, 398
power stations, 398
runoff, 398
sewage, 398
monitoring, 400, 401
testing, 341, 344
water supply, chemicals in, 406
watershed, 360
wave model of light, 213
wavelength, 213
waves, 349, 351
wet mount, 106
white blood cells, 140
WHMIS, 10
work, 287-292

x

X-rays, 217

PHOTO CREDITS AND ACKNOWLEDGEMENTS

The publisher wishes to thank the following sources for photographs, illustrations, and other materials used in this book. Care has been taken to determine and locate ownership of copyright material in this text. We will gladly receive information enabling us to rectify any errors or omissions in credits.

Photography

Cover Coney Jay, Tony Stone Images/Unit Opener pp. 2-3 H. David Seawel, Corbis/p. 4 Larry J. MacDougal, First Light/p. 5 N. McKee, IDRC/p. 6 N. McKee, IDRC/p. 7 Adam Woolfitt, Corbis/p. 8 M. Stephenson, First Light/p. 11 Ray Boudreau/p. 14 (top) Ray Boudreau/p. 14 (bottom) Charlie Westerman, Liaison International/p. 16 (top left) Foto KIA, Image Network Inc./p. 16 (bottom left) Corel Stock Photo Library/p. 16 (middle top) Richard Hamilton Smith, Corbis/ p. 16 (middle bottom) Tony Braasch, Tony StoneImages/p. 16 (right) Dean Conger, Corbis/p. 17 Paul A. Souders, Corbis/p. 18 (top, left and right) Corel Stock Photo Library/p. 18 (bottom left) Kevin Anderson, Tony Stone Images/p. 18 (bottom right) Corel Stock Photo Library/p. 21 Ray Boudreau/p. 22 (top and bottom) Ray Boudreau/p. 23 (top) Ray Boudreau/p. 23 (bottom) Forensic Identification Services, Royal Canadian Mounted Police/p. 25 Ray Boudreau/p. 26 Ray Boudreau/p. 27 Bob Krist, Corbis/p. 28 Ray Boudreau/p. 30 Ray Boudreau/p. 31 Images Colour Library, First Light/p. 32 Ray Boudreau/p. 34 Ray Boudreau/p. 36 Ray Boudreau/p. 38 NASA/p. 39 Ray Boudreau/p. 40 (left) Clive Webster, Spectrum Stock, Ivy Images/p. 40 (middle left) Kevin Fleming, Corbis/p. 40 (middle right) Ray Boudreau/p. 40 (right) Ray Boudreau/p. 41 Ray Boudreau/ p. 42 Ray Boudreau/p. 44 Ray Boudreau/p. 46 (top) Ray Boudreau/p. 46 (bottom) Ian Chrysler/p. 48 Courtesy of LaCrosse McCormick (www.lacrosseclocks.com)/ p. 49 G. Azumendi, First Light/p. 51 (top) Corel Stock Photo Library/p. 51 (bottom) Bettmann, Corbis/p. 52 Ray Boudreau/p. 53 (top) Peter Grumann, Image Bank/p. 53 (bottom) Stephen Marks, Image Bank/p. 54 Ray Boudreau/p. 55 Amy Wiley/Wales, Image Network Inc./p. 56 Mike Chew, First Light/p. 59 (bottom left) Sorenson, First Light/p. 60 Orion Ontario Bus Industries Inc./p. 62 Kenneth Rogers, Corbis/p. 64 Ray Boudreau/p. 65 Photo Researchers Inc./© Gregory G. Dimijian/p. 66 (top) Ray Boudreau/p. 66 (bottom) Tom Pentages/p. 67 Courtesy Girard Industries/p. 69 (top) U. S. Naval Historical Center/p. 69 (bottom) Mike Dempsey, Oceanetic/p. 70 Ray Boudreau/p. 71 Guido A. Rossi, Image Bank/p. 72 (left) Otis Elevator Company Historical Archives/p. 72 (right) Joe Baraban, First Light/p. 73 Larry J. MacDougal, First Light/p. 74 © Jonathan Blair, Corbis/Unit Opener pp. 80-81, UHB Trust, Stone/ p. 80 UHB Trust, Stone/ p. 81 UHB Trust, Stone/ p. 82 Bettmann, CORBIS/ p. 84 (left) Bill Ivy, Ivy Images/ p. 84 (right) Robert Brons, BPS, Stone/ p. 85 Tom Edwards, Visuals Unlimited/ p. 86 Lester V. Bergman, CORBIS/ p. 88 (top left) Bill Ivy, Ivy Images/ p. 88 (top right) Barbara Gerlach, Visuals Unlimited/ p. 88 (bottom) Corel Stock Photo Library/ p. 89 (top to bottom) Norbert Wu, Stone/ John Lawrence, Stone/ Bill Ivy, Ivy Images/ James Balog, Stone/ David and Hayes Norris, Photo Researchers, Inc./ p. 90 (top) Tom McHugh, Photo Researchers, Inc./ p. 90 (bottom left) Kjell B. Snadved, Visuals Unlimited/ p. 90 (bottom right) Alan G. Nelson, Animals Animals/ p. 91 Michael Fogden, Earth Scenes/ p. 92 Hal Beral, Visuals Unlimited/ p. 93 Yorgos Nikas, Stone/p. 94 (left) Ray Boudreau/p. 94 (right) Corel Stock Photo Library/p. 95 (left)
M.L Sinibaldi, First Light/p. 95 (top right) Medical Illus. SBHA, Stone/p. 97 P. Saloutos, First Light/p. 98 Bettmann, CORBIS/p. 99 Ray Boudreau/p. 100 Ray Boudreau/p. 102 Ottmar Bierwagon, Spectrum Stock, Ivy Images/p. 104 Ray Boudreau/p. 105 J.L Carson, Custom Medical Stock Photo/p. 106 Ray Boudreau/p. 107 Ray Boudreau/p. 108 (top left) Ron Boardman, Stone/p. 108 (bottom left) Spike Walker, Stone/p. 108 (bottom right) Triarch, Visuals Unlimited/p. 110 (bottom) David M. Phillips, Visuals Unlimited/p. 110 (top) Mark Carwardine, Spectrum Stock, Ivy Images/p. 111 (top) M. Kage, Spectrum Stock, Ivy Images/p. 111 (right) John Forsythe, Visuals Unlimited/p. 111 (bottom) Bettman, CORBIS/p. 112 T.E Adams, Stone/p. 113 Bettman, CORBIS/p. 114 (top) Mike Abbey, Visuals Unlimited/p. 114 (centre) Robert Brons, BPS, Stone/p. 114 (bottom) Mike Abbey, Visuals Unlimited/p. 116 Ray Boudreau/p. 117 (top) Kevin and Betty Collins, Visuals Unlimited/p. 117 (bottom) Bill Ivy, Ivy Images/p. 118 Ray Boudreau/p. 119(a) Stanley Flegler, Visuals Unlimited/p. 119(b and c) David M. Phillips, Visuals Unlimited/p. 121 (top right) David Becker, Stone/p. 121 (bottom) Phototake, First Light/p. 122 (top left) Fred Hossler, Visuals Unlimited/p. 122 (top right) Robert Brons, BPS/Tony Stone/p. 122 (bottom right and left) G.W Willis, BPS, Stone/p. 122 (centre) Peter Cade/p. 123 (top to bottom) R.W Van Norman, Visuals Unlimited/ Cabisco, Visuals Unlimited/ Robert Brons, BPS, Stone/ Diane R. Nelson, Visuals Unlimited/p. 124 (left) Corel Stock Photo Library/p. 125 (left to right) Mike Abbey, Visuals Unlimited/ Corel Stock Photo Library/ Paul Johnson, BPS, Stone/ Corel Stock Photo Library/ Bill Ivy, Ivy Images/p. 128 Bettmann, CORBIS/p. 129 CNRI, Science Photo Library, Photo Researchers, Inc./p. 130 G. Shih, R. Kessek, Visuals Unlimited/p. 131 First Light/p. 132 Coutesy David Rodney/p. 135 Baron Wolman, Stone/p. 136 Bill Ivy, Ivy Images/p. 138 Ray Boudreau/p. 139 (top) Dennis Kunkel, CNRI, Phototake, First Light/p. 139 (middle) Fred Hossler, Visuals Unlimited/p. 139 (bottom) Visuals Unlimited/p. 140 (left) Betsy J. Reyneau, The Granger Collection, New York/p. 140 (right) Dennis Kunkel, First Light/p. 143 Marc Romanelli, The Image Bank/p. 144 Ray Boudreau/p. 145 M. Heron, First Light/p. 146 (top) P. Austring, First Light/p. 146 (bottom) Medical illus., SBHA, Stone/p. 148 David M. Phillips, Visuals Unlimited/p. 149 Visuals Unlimited/p. 150 Ray Boudreau/p. 152 V. Wilkinson, Valan Photos/p. 154 Mark Harmel, Stone/p. 155 (top) Science Vu, Visuals Unlimited/p. 155 (bottom) Bettmann, CORBIS/p. 156 (left) Archive Photos/p. 156 (right and centre) Bill Ivy, Ivy Images/p. 157 Ray Boudreau/p. 158 (left) The Granger Collection, New York/p. 158 (right) "Canada’s Food Guide to Healthy Eating, 1992 Health Canada. Reproduced with permission of the Minister of Public Works and Goverment Services Canada, 1999."/p. 159 Bill Ivy, Ivy Images/p. 160 Tracey Frankel, The Image Bank/p. 161 Tony Wacker, Stone/p. 162 A. Glauberman, Science Source, Photo Researchers Inc.,/p. 163 (left and right) Cabisco, Visuals Unlimited/p. 164 (top)Dr. E. Walker, Science Photo Library, Photo Researchers, Inc./p. 164 (bottom) Luke A. Marshall, Helicobacter Foundation/p. 165 Ray Boudreau/p. 166 Ray Boudreau/p. 168 Science Vu, Visuals Unlimited/p. 172 David Parker, Science Photo Library, Photo Researchers, Inc./p. 173 David Parker, Science Photo Library, Photo Researchers Inc./p. 174 (left) CORBIS/p. 174 (right) Given Imaging/p. 174 (bottom) NASA/p. 175 Given Imaging/p. 176 Stephen Studd, Stone/p. 178 Ray Boudreau/p. 179 (top) Joe Martha/p. 179 (bottom and right) Ray Boudreau/p. 180 (left) Ibn Al Haytham, New York Public Library/p. 182 (top) Scott Goldsmith, Stone/p. 182
(left) JAS Townsend and Sons/p. 183 The Granger Collection, New York/p. 184 (bottom) Chip Simons Photography/p. 185 Ray Boudreau/p. 186 Tom Edwards, VISUALS UNLIMITED/p. 187 R. Ball, First Light/p. 188 Christopher Bissell, Stone/p. 191 (left) Lluis Real, First Light/p. 191 (middle) Ray Boudreau/p. 191 (right) Christoph Burki, Stone/p. 192 (left) Ray Boudreau/p. 192 (right) 3M Canada/p. 193 Dennis di Cicco, CORBIS/p. 194 Art Wolfe, Stone/p. 195 Ray Boudreau/p. 196 Ray Boudreau/p. 197 (left) Richard Hutchings, Photo Researchers, Inc./p. 197 (right) Roger Ressmeyer, CORBIS/ p. 200 (right) Howie Garber, Stone/p. 200 (left) Arthur Morris, VISUALS UNLIMITED/p. 201 Ray Boudreau/p. 202 Ray Boudreau/p. 203 (top) Kent Wood, Photo Researchers, Inc./p. 203 (bottom) Stephen Dalton, Photo Researchers, Inc./p. 204 (left) Ray Boudreau/p. 204 (right) Lori Adamski Peek, Stone/p. 204 (bottom) David Parker, Science Photo Library, Photo Researchers, Inc./p. 205 (top) David Parker, Science Photo Library, Photo Researchers, Inc./p. 205 (bottom) Ray Boudreau/p. 206 Ray Boudreau/p. 207 Ray Boudreau/p. 208 (bottom) Bob Rowan, Progressive Image, CORBIS/p. 209 Ray Boudreau/p. 210 (top and middle) Ray Boudreau/p. 210 (bottom) Corel Stock Photo Library/p. 212 David Joel, Stone/p. 214 Barbara Filet, Stone/p. 216 (left to right) Sony Canada/ Panasonic Canada/ David Montrose, M.D, Custom Medical Stock Photo/p. 217 (left to right) K. Glaser \& Associates, Custom Medical Stock Photo/ Mark E Gibson, VISUALS UNLIMITED/ Lawrence Berkley Lab.,ss, Photo Researchers, Inc./p. 218 (left) Mark E. Gibson, VISUALS UNLIMITED/p. 218 (right) Pete Saloutos, First Light/p. 219 First Light/p. 220 (top) Doug Martin, Photo Researchers, Inc./p. 220 (bottom) Tim Thompson, Stone/p. 221 (top left) E. Otto, COMSTOCK/p. 221 (top right) Bettmann, CORBIS/p. 221 (bottom left) Thomas Brase, Stone/p. 221 (middle center) Rob Melnychuck, First Light/p. 221 (middle right) John Elk, Stone/p. 221 (bottom center) Jeff J. Daly, VISUALS UNLIMITED/p. 221 (bottom right) NASA/p. 222 (top) James Balog, Stone/p. 222 (left, both) Ray Boudreau/p. 223 Judy-Ann Cazemier, Ivy Images/p. 224 (top) Joe Martha/p. 224 (bottom) First Light/p. 225 (top) Bill Ivy, Ivy Images/p. 225 (bottom) Ken Lucas, VISUALS UNLIMITED/p. 226 (left) VISUALS UNLIMITED/p. 227 (bottom) Jeff Greenberg, VISUALS UNLIMITED/p. 227 (bottom inset) Vaughan Fleming, Science Photo Library, Photo Researchers, Inc./p. 228 (left) Benelux Press, Masterfile/p. 228 (right) Alan Levenson, Stone/ p. 230 (top) Robert Frerck, Stone/p. 230 (bottom) Vladimir Sevcik/p. 231 D. Yeske, VISUALS UNLIMITED/ p. 232 (all) Ray Boudreau/p. 234 Stephen Chemin, CP Picture Archive/p. 235 (top right) National Institute of Health, Science Photo Library, Photo Researchers, Inc./p. 235 (bottom) Excalibur Electro Optics, Inc./p. 236 (top, left to right) Ken Lucas, VISUALS UNLIMITED/ G\&R Grambo, First Light/ Geoff du Feu, First Light/ First Light/ Bill Ivy, Ivy Images/ p. 236 (bottom) Jeff Rotman, Stone/p. 237 (top right, both) Leonard Lessin, Photo Researchers, Inc./p. 237 (center left) Michael Midgley, Stone/p. 237 (centre right) Desmond Burdon, Stone/p. 237 (bottom) VISUALS UNLIMITED/p. 238 (top) First Light/p. 68 (bottom) Zig Leszczynski, Animals Animals/p. 239 (left, both) First Light/p. 239 (top, right) Chris Cheedle, First Light/p. 240 (top left) First Light/p. 240 (top right) Tony Marshall, Empics Ltd./p. 240 (bottom left and right) Stone/p. 241 Gianni Dagli Orti/p. 242 Corel Stock Photo Library/p. 243 (left and right) D. Wiggett, First Light/p. 244 (top) NOAA/p. 244 (bottom) CORBIS/p. 248 Ray Boudreau/p. 252-53 J. Feingersh, First Light/p. 254 \& 255 da Vinci Surgical

System courtesy of Intuitive Surgical/p. 257 Christopher Thomas, Tony Stone/ p. 258 (background) © CORBIS/p. 258 (inset) © Ed Young, CORBIS/p. 259 (top left to right) © Gary Carter, Visuals Unlimited, © Angelo Hornak, CORBIS/Brent Davis/Canadian Press/p. 259 (bottom) © Archivo Iconografico, S.A., CORBIS/ p. 260 © Bettmann, CORBIS/p. 261 (left) © Tom Bean, CORBIS/p. 261 (right) Art Resource, NY/p. 263 (top) RDF, Visuals Unlimited/p. 263 (bottom) Ray Boudreau/p. 265 (top) © Kevin Fleming, CORBIS/p. 265 (bottom) Ray Boudreau/p. 266 (left \& right) Ray Boudreau/p. 267 Ray Boudreau/p. 268 (top four) Ray Boudreau/p. 268 (bottom) © W. Banaszewski, Visuals Unlimited/p. 269 (top) © Hulton-Deutsch Collection, CORBIS/p. 269 (bottom) © Hulton-Deutsch Collection, CORBIS/p. 270 Rocky Mountain Bicycles/p. 273 Ray Boudreau/p. 274 Rocky Mountain Bicycles/p. 275 © Gunter Marx/CORBIS/p. 278 © Paul A. Souders, CORBIS/p. 279 Owen Fanken, CORBIS/p. 282 Patrick Morrow, First Light/p. 283 © Hank Andrews, Visuals Unlimited/p. 284 Ray Boudreau/p. 285 © COMSTOCK, W. Griebeling/p. 287 (top left) Ray Boudreau/p. 287 (top right) © Kevin R. Morris, CORBIS/p. 287 (bottom right) © Richard Hamilton Smith, CORBIS/p. 288 © Tony Arruza, CORBIS/p. 289 Ray Boudreau/p. 292 Dick Hemingway/p. 293 (top) Ivy Images/p. 293 (bottom) Associated Press AP, Canadian Press/p. 294 © David Simson, Stock, Boston, PictureQuest/p. 296 (left \& right) Ray Boudreau/p. 299 © S. Berry, Visuals Unlimited/p. 300 Ivy Images/ p. 301 © Lee Snider, CORBIS/p. 302 (top \& bottom) AECL/p. 304 (left) © Bettmann, CORBIS/p. 304 (middle) © Philip Gould, CORBIS/p. 304 (right) Dick Hemingway/p. 305 (top) Lionel Cirroneau/Canadian Press, (bottom left) © Jose Carrillo/Photo Edit, (bottom centre) © Jonathan Nourok/Photo Edit, (bottom right) © Michael Newman/Photo Edit/p. 306 © Joseph Sohm/ ChromoSohm Inc./ CORBIS/p. 307 (left) Alex Fevzer, CORBIS/p. 307 (right) Richard Cummins, CORBIS/p. 308 ©Tony Freeman, Photo Edit/p. 310 (top \& bottom) Ray Boudreau/p. 312 Ray Boudreau/p. 313 Bombardier Inc./p. 314 © David YoungWolf, PhotoEdit, Inc./p. 315 (far left) © Schenectady Museum, Hall of Electrical History Foundation/ CORBIS; (centre) © Hulton-Deutsch Collection/CORBIS; (bottom right) © Myrleen Ferguson Cate/Photo Edit/p. 316 © Michael S. Yamashita, CORBIS/p. 317 (left) Bettmann/CORBIS; (centre) Bettman/CORBIS; (right) Lynn Goldsmith/CORBIS/p. 318 (top) M. Clemmer, Zuma, First Light/ p. 319 (top) CORBIS/p. 319 (bottom) National Aviation Museum, Musée national de l'aviation (Canada)/p. 320 Milton Historical Society/p. 322 © LINK, Visuals Unlimited/p. 325 George Westinghouse Museum/p. 327 © Valerie Wilkonson/VALAN PHOTOS/Unit Opener pp. 328-329, First Light/p. 330 Visuals Unlimited/p. 331 (top) Glenbow Archives/p. 331 (bottom) Visuals Unlimited/p. 333 (left) T. Stableford, Image Bank/p. 333 (right) The Cousteau Society, Image Bank/p. 334 NASA/p. 335 (top) John D. Cunningham, Visuals Unlimited/p. 336 Ray Boudreau/p. 339 Charles O. Cecil, Visuals Unlimited/p. 340 Betz, Visuals Unlimited/p. 341 Ted Speigel, CORBIS/p. 341 (inset) M. Abbey, Visuals Unlimited/p. 343 (top) Ray Boudreau/p. 343 (bottom) Ray Boudreau/p. 344 Ray Boudreau/p. 346 Cheyenne Rouse, Visuals Unlimited/p. 347 M. Ponomareff, PonoPress Internationale Inc./p. 348 Owen Broad, Image Network Inc./p. 349 (left) E. Shore, MDI, Me, Visuals Unlimited/p. 349 (right)The Russ Heinl Group, Image Network Inc./p. 350 Ray Boudreau/p. 352 (top) Alan Marsh, First Light/p. 352 (bottom) Alan Wilkinson, Valan Photos/p. 353 (left and right) Norm Piluke, Ivy Images/p. 354 Jeanette Thomas, Visuals Unlimited/p. 355 Stephen J.

Krasemann, Valan Photos/p. 356 Ray Boudreau/p. 359 (left) Jose Fuste Raga, First Light/p. 359 (right) S. J. Kraseman, Valan Photos/p. 360 Philip \& Karen Smith, Tony Stone Images/p. 363 (right) Gamma, PonoPresse International/p. 364 (top) Glen M. Oliver, Visuals Unlimited/p. 364 (middle) Steve McCutcheon, Visuals Unlimited/p. 364 (bottom) Steve McCutcheon, Visuals Unlimited/p. 365 (top) Victoria Hurst, First Light/p. 365 (bottom) Ivy Images/p. 366 (top) Eero Sorila, Image Network/p. 366 (bottom) R.J. Kollee/p. 368 Randy Lincks, Image Network Inc./p. 370 (left) Jim Hughes, Visuals Unlimited/p. 370 (right) William J. Hebert, Tony Stone Images/p. 372 SUPERSTOCK, Alan Briere/p. 374 Corel Stock Photo Library/p. 375 (top) Steve Short, First Light/p. 375 (middle) Ivy Images/p. 375 (bottom) Bernd Wittich, Visuals Unlimited/p. 376 (top) T. Kitchin, First Light/ p. 376 (middle) Jerry Kobalenko, First Light/p. 377 (left) Robert Brons, BPS, First Light/p. 377 (right) Tom Walker, Visuals Unlimited/p. 378 (top) Patrice Ceisel, Visuals Unlimited/p. 378 (bottom) Peter David, 1972, Photo Researchers, Inc./ p. 379 Nada Pecnik, Visuals Unlimited/p. 380 (top) Larry Wells, Image Network/p. 380 (bottom) SUPERSTOCK, Herb Levart/p. 381 Keith Gosse, Canadian Press/p. 382 Courtesy The Telegram/p. 383 Kevin \& Betty Collins, Visuals Unlimited/p. 384 John S. Lough, Visuals Unlimited/p. 385 Dave B. Fleetham, Visuals Unlimited/p. 386 Corbis/p. 387 Cabisco, Visuals Unlimited/ p. 388 (top) Steve Short, First Light/p. 388 (bottom) Glenn M. Oliver, Visuals Unlimited/p. 389 John Sohlden, Visuals Unlimited/p. 390 Ray Boudreau/p. 391 (left) Gary Meszaros, Visuals Unlimited/p. 391 (middle) Alex Kerstitch, Visuals Unlimited/p. 391 (right) Hal Beral, Visuals Unlimited/p. 393 NASA/p. 394 (bottom left) Dan Roitner, Ivy Images/p. 394 (top left) Roy Lemoyne, CIDA/p. 394 (top right) Dan Roitner, Ivy Images/p. 395 (top) Tim Pelling, Ivy Images/p. 395 (bottom left) Don Dixon, Ivy Images/p. 395 (bottom right) Ivy Images/p. 396 (left) Al Harvey, The Slide Farm/p. 396 (right) Raymond Gehman, Corbis/p. 397 Lost Villages Historical Society Museum/p. 401 (top) Gordon J. Fisher, Image Network/p. 401 (bottom) D. Long, Visuals Unlimited/p. 402 Courtesy of The City of Lethbridge/p. 403 Bruce Berg, Visuals Unlimited/p. 406 George Wilder, Visuals Unlimited/p. 408 Russ Heinl Group, Image Network Inc.

Illustrations

Amid Studios 42, 43, 44, 45, 51, 53, 68, all safety icons, 115 (bottom), 136, all safety icons, 196, 201, 203, 227, 235, 243, 249, 250, 251, 272, 346, 362, 395, all safety icons
Crowle Art 6, 33, 36, 48, 56, 63, 76, 99 (bottom), 112, 121, 181, 234, 263, 265, 282, 295, 325, 335, 363, 384, 397, 409, 412
Wallace Edwards 358, 398
Francois Escalmel 275, 298, 310, 311 (bottom)
John Fraser 9, 50
Gefen Group, Knowledge Media Designs 12, 35, 345 (top)
Philippe Germain 15, 19 (top), 24, 29, 34, 42, 52, 83, 85, 93, 99 (top), 102, 107, 115 (top), 127 (bottom), 132, 135 (bottom), 141 (centre), 151, 175, 189 (bottom), 194, 195, 198 (top), 214, 219, 223, 233, 271 (bottom), 276, 291, 332, 374, 400 (bottom), 404

Bernadette Lau 95, 96, 127 (top), 128, 130 (top), 133, 200, 290 (bottom), 351 (top)
Stephen MacEachern/Quack 13, 189 (top)
Dave Mazierski 92, 126, 148, 152, 231, 233, 236, 238, 245
Paul McCusker 120, 199 (top)
Dave McKay 4 (background image), 52, 57, 58, 59, 74, 271 (top), 286, 345 (bottom), 361, 369, 400 (top)
Josée Morin 131
NSV Productions 10, 19 (bottom), 20, 59, 66, 67, 71, 77, 86, 87, 103, 109, 114, 116, 129, 130 (bottom), 133 (top), 134, 137, 142, 147 (left), 149, 183-186, 190, 193, 197, 198 (bottom), 199 (margin), 208, 213, 215, 216-217, 233 (bottom), 246, 256, 262 (bottom), 264, 279, 280, 281, 290 (top), 309, 311 (top), 318, 320, 324, 338, 351 (bottom), 353, 364, 365, 367, 392
Dusan Petricic 82, 177, 211, 226, 262, 277
Teco Rodrigues 123, 124, 169
Angela Vaculik 373, 375, 376, 377, 409 (top)
m
$=$
m

